A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions
نویسندگان
چکیده
In this paper, we propose a hierarchical approach to 3D scattered data interpolation with compactly supported basis functions. Our numerical experiments suggest that the approach integrates the best aspects of scattered data fitting with locally and globally supported basis functions. Employing locally supported functions leads to an efficient computational procedure, while a coarse-to-fine hierarchy makes our method insensitive to the density of scattered data and allows us to restore large parts of missed data. Given a point cloud distributed along a surface, we first use spatial down sampling to construct a coarse-to-fine hierarchy of point sets. Then we interpolate the sets starting from the coarsest level. We interpolate a point set of the hierarchy, as an offsetting of the interpolating function computed at the previous level. Fig. 1 shows an original point set (the leftmost image) and its coarse-to-fine hierarchy of interpolated sets. According to our numerical experiments, the method is essentially faster than the state-of-art scattered data approximation with globally supported RBFs [9] and much simpler to implement.
منابع مشابه
A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Function
In this paper, we propose a hierarchical approach to 3D scattered data interpolation with compactly supported basis functions. Our numerical experiments suggest that the approach integrates the best aspects of scattered data fitting with locally and globally supported basis functions. Employing locally supported functions leads to an efficient computational procedure, while a coarse-to-fine hie...
متن کاملCompactly supported radial basis functions : how and why ? by Sheng - Xin
The use of radial basis functions have attracted increasing attention in recent years as an elegant scheme for high-dimensional scattered data approximation, an accepted method for machine learning, one of the foundations of mesh-free methods, an alternative way to construct higher order methods for solving partial differential equations (PDEs), an emerging method for solving PDEs on surfaces, ...
متن کاملMultistep Scattered Data Interpolation using Compactly Supported Radial Basis Functions
A hierarchical scheme is presented for smoothly interpolating scattered data with radial basis functions of compact support. A nested sequence of subsets of the data is computed efficiently using successive Delaunay triangulations. The scale of the basis function at each level is determined from the current density of the points using information from the triangulation. The method is rotational...
متن کاملThinning algorithms for scattered data interpolation
Multistep interpolation of scattered data by compactly supported radial basis functions requires hierarchical subsets of the data. This paper analyzes thinning algorithms for generating evenly distributed subsets of scattered data in a given domain in IR. AMS subject classification: 41A15, 65D05, 65D07.
متن کاملPositive Approximation and Interpolation Using Compactly Supported Radial Basis Functions
We discuss the problem of constrained approximation and interpolation of scattered data by using compactly supported radial basis functions, subjected to the constraint of preserving positivity. The approaches are presented to compute positive approximation and interpolation by solving the two corresponding optimization problems. Numerical experiments are provided to illustrate that the propose...
متن کامل